

Outline

- > Role of gas in the universe
 - Cosmology
 - ➤ Galaxy formation
 - > Star and planet formation
- ➤ What physics does gas follows → Fluid Dynamics
 - > Euler Equations and when is fluid approx. vaild
 - ➤ How to include more physics
- ➤ Gallery

Introduction The inter-connected universe

Review: History of the universe

Inflation

Accelerated expansion of the Universe

Formation of light and matter

Light and matter are coupled

Dark matter evolves independently: it starts clumping and forming a web of structures

Light and matter separate

- Protons and electrons form atoms
- Light starts travelling freely: it will become the Cosmic Microwave Background (CMB)

Dark ages

Atoms start feeling the gravity of the cosmic web of dark matter

First stars

The first stars and galaxies form in the densest knots of the cosmic web

Galaxy evolution

Gas in DM halo

- ➤ In DM halos, gas would fall into the center of the potential well.
- Angular momentum conservation requires gas to speed up and form a rotationally supported disk.
- The disk eventually form stars and becomes so called galaxy.

In the disk

- Under right conditions, gas on the disk would further collapse and become star forming region.
- Similar structure(filaments / core) appears again.
- > Stars form at the center of the cores.

Star and planet formation

- > Gas forms protoplanetary disks (PPDs) around the new born stars.
- > Planets form within the PPDs.

PPD IM Lupi in NIR by SPHERE

PPD IM Lupi in Submm by ALMA

Story of gas spans more than 16 orders in spatial scale!

Feedback from small to large scale!

Stellar feedback

- > Young stars forms wind and jets (HH objects).
- ➤ Massive stars produce:
 - > Ionizing radiation.
 - > Stellar wind.
 - > Supernova explosion.
- ➤ Energy returned from stars can affect evolution of galaxies.

AGN feedback

- ➤ Gas accretion on SMBHs.
- ➤ Jet launching: AU scale.

 Jet affects: Mpc scale.

Credit: Lia Medeiros, Chi-Kwan Chan, Feryal Özel, Dimitrios Psaltis

Gas in the universe

- > Gas is involved in almost all astrophysical system we are interested in.
- ➤ Multi-scale and multi-physics nature of gas:
 - > Spatial scale: Mpc (structure formation) to km (X-ray binary accretion disk).
 - Timescale: Gyr (structure formation) to ms (supernova explosion).
 - ➤ Physics involved: gravity (Newtonian/GR), hydrodynamics, magnetic field, radiative processes, nuclear physics, neutrino transport, etc.
- > We need a **framework** that can (in principle) handle all the physical processes together with reasonable resources.

Hydrodynamic Simulations

流體力學與天文物理

- > 任何理論模型都是對真實世界的有效近似
- > 天文物理考慮的尺度:
 - ► 恆星:10³⁰ 公斤 → 10⁵⁷ 顆原子光是儲存就需要 10⁴⁵ TB 的儲存空間
 - ▶ 可觀測宇宙:> 10⁴8 太陽質量
 - > 光子、重力場、波函數、量子場……
- 勢必需要以宏觀統計性質簡化系統
- > 流體近似是最常見、最強大的作法之一

Quantum mechanics to fluid simulation - the story of everything | braintruffle

觀察系統→建立模型→寫下方程式→解方程式→詮釋結果

Treat the system of interest as multiple continuous fields.

What equations should fluid follows?

Let us start from density: what is the relation between density and velocity?

$$egin{aligned} rac{\partial
ho}{\partial t} +
abla \cdot (
ho oldsymbol{v}) &= 0 \quad ext{Mass Conservation} \ rac{\partial
ho oldsymbol{v}}{\partial t} +
abla \cdot (
ho oldsymbol{v} \otimes oldsymbol{v}) +
abla p_{ ext{tot}} &= 0 \quad ext{Momentum Conservation} \ rac{\partial e}{\partial t} +
abla \cdot [(e + p_{ ext{tot}}) oldsymbol{v}] &= 0 \quad ext{Energy Conservation} \end{aligned}$$

These are called **Euler Equations** for fluid dynamics.

One can put source terms on the right hand side to add in physics.

Example: Gravity and blast

Place a bomb in the atmosphere that would explode and release energy at t = 0.

$$egin{aligned} rac{\partial
ho}{\partial t} +
abla \cdot (
ho oldsymbol{v}) &= 0 \ rac{\partial
ho oldsymbol{v}}{\partial t} +
abla \cdot (
ho oldsymbol{v} \otimes oldsymbol{v}) +
abla p_{ ext{tot}} &=
ho oldsymbol{g} \ rac{\partial e}{\partial t} +
abla \cdot [(e + p_{ ext{tot}}) oldsymbol{v}] &=
ho oldsymbol{v} \cdot oldsymbol{g} + e_{ ext{blast}} \left(x, y, t_0
ight) \ & ext{Source term:} \end{aligned}$$

gravity bomb energy

Equation of states (EoS)

If you count the number of variables and equations:

- \triangleright Variable: ρ , \vec{v} , e, P. 6 fields
- > Equation: 5 independent ones.

One need another equation to solve the system. This is the EoS.

When can we use fluid approx.?

- ➤ Fluid dynamics simplifies particle motion into macroscopic properties (e.g. temperature).Is that valid for all systems?
- ➤ No. That only works if there are sufficient collision between particles.
- > Fluid approximation only works if:
 - Mean free path << System scale</p>
 - ➤ Collision timescale << Timescale of interest

磁流體力學 MHD

- 宇宙中磁場幾乎無處不在,且在許多系統中皆扮演著重要的角色。
- 在流體力學的基礎上,可以進一步加入磁場的影響:

根據模擬的系統,這套方程組可以再加入

- ➤ 宇宙射線 Cosmic-Ray
- ▶ 黏滯性 Viscosity
- 電阻 Resistance
- ➤ 相對論效應 Relativity
- ▶ 恆星與 AGN 回饋……等

解算方程組:Grid Based Method

- ▶ 有了方程式,接下來就是用電腦幫我們解開它們。
- ➤ 一種常用方法是「有限體積法 Finite Volume Method, FVM」加上「自適應網格 Adaptive Mesh Refinement, AMR」。

解算方程組:SPH Method

另一種常見的方法是光滑粒子流體動力學法 Smoothed Particle Hydrodynamics

解算方程組:Hybrid / Moving Mesh Method

➤ 結合 FVM 和 SPH 各自的優勢

Computer go BRRRRRRR

TAIWANIA 2. NVIDIA

流體力學與天文物理

▶ 計算天文物理模擬的基本流程

實驗設計

進行實驗

計算天文物理是理論工作,但是研究流程其實類似實驗

Gallery

- Planetary collision.
- Code: Swift (SPH).
- ➤ IC: Giant impact that changed the rotation axis of Uranus.
- > Physics:
 - ➤ EoS for rock (e.g. SiO₂, MgO, FeS)
 - \triangleright EoS for ice (e.g. H_2O , NH_3 , CH_4).

Gallery (

- Supernova explosion.
- ➤ Code: FLASH (FVM).
- > IC: Center of massive stars.
- > Physics:
 - ➤ GR & Self-gravity
 - Neutrino transport
 - Nuclear EoS

$$egin{aligned} rac{\partial
ho}{\partial t} +
abla \cdot (
ho oldsymbol{v}) &= 0 \ rac{\partial
ho oldsymbol{v}}{\partial t} +
abla \cdot (
ho oldsymbol{v}oldsymbol{v}) +
abla P &= -
ho
abla \Phi \ rac{\partial
ho E}{\partial t} +
abla \cdot [(
ho E + P) oldsymbol{v}] &= -
ho oldsymbol{v} \cdot
abla \Phi \ rac{\partial
ho Y_e}{\partial t} +
abla \cdot (
ho oldsymbol{v} Y_e) &= 0 \ rac{\partial
ho Y_l^t}{\partial t} +
abla \cdot (
ho oldsymbol{v} Y_l^t) &= 0 \ rac{\partial (
ho Z_l^t)^{3/4}}{\partial t} +
abla \cdot (oldsymbol{v} (oldsymbol{v} (oldsymbol{v} oldsymbol{v} Y_l^t)) &= 0 \end{aligned}$$

NAR Labs 財團法人國家實驗研究院

國家高速網路與計算中心 National Center for High-performance Computing

Core-Collapse Supernova Simulation

Visualization: Kuo-Chuan Pan (潘國全)
Department of Physics
Institue of Astronomy
National Tsing Hua University, Taiwan

Gallery

- SMBH accretion
- ➤ Code: HARM (FVM).
- ➤ IC: SMBH and accretion disk.
- Physics:
 - General relativity
 - > MHD Plasma physics
 - > GR radiative transfer

Gallery

- Cosmological Simulation (TNG).
- Code: Arepo (Hybrid).
- > IC: Primordial density perturbation
- > Physics:
 - Self-gravity (N body)
 - > MHD in expanding universe
 - > Star formation
 - > Stellar / AGN feedback

Summary

- > Gas is important in most of the astrophysics.
- ➤ Fluid dynamics provides a good framework to describe the multi-physics, multi-scale behavior of gas. MHD, gravity (Newton/GR), radiative processes, astrophysical feedbacks, etc.
- > Hydro equations can be solved by different numerical methods.
- > Hydrodynamic simulations is now widely used to understand complicated astrophysical systems in details.

Trailer: Seminar on Thursday

歐柏昇一Post Main Sequence Stellar Evolution

▶ 學歷

- ▶ 2012 2016 台大物理、歷史雙主修
- ▶ 2016 2018 台大物理碩士
- ▶ 2018 2023 台大物理/中研院天文所博士班
- > 天文圈重要資歷
 - ▶ 2013 2014 台大天文社社長
 - ▶ 2014 2019 聯盟立案核心推動者
 - ▶ 2019 2023 全國大學天文社聯盟理事長
- ▶ 合作學者:朱有花、陳科榮